If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2-32Y+56
We move all terms to the left:
-(2Y^2-32Y+56)=0
We get rid of parentheses
-2Y^2+32Y-56=0
a = -2; b = 32; c = -56;
Δ = b2-4ac
Δ = 322-4·(-2)·(-56)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-24}{2*-2}=\frac{-56}{-4} =+14 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+24}{2*-2}=\frac{-8}{-4} =+2 $
| 4x+20=34 | | –x2+10x=25 | | 27–(5b–4b)=(7b–1)+(3b+6) | | 1.6^x=1.03 | | 12a-7-3a=3-4a-10 | | 1,6x+0,4-x=5,2-0,6 | | 5^4-5x=2^x-4 | | (x+3)(x+4)+(x–2)(x+1)=30 | | (+x^2+4)(+x^2-4)=0 | | (x2+4)(x2-4)=0 | | a=(314)(6) | | (x-10)^2=x^2-400 | | a+(a+15)+(a+30)=180 | | 5)-b-2=8 | | (5x+15)+(2x+5)=180 | | Z^3+-9z^2+14z+24=0 | | Z3+-9z2+14z+24=0 | | 2(x+3)=4-3 | | x.20/(100)=100 | | x/36=-4 | | 4x–8=8–4x | | 180=x-0.2x | | 8x²=1600 | | 5r+15=3 | | X=4,2x | | |m+9|+3=34 | | 8n+40=120 | | (−3x−8)(−4.5x−1.4)=0 | | −3x−8)(−4.5x−1.4)=0 | | (0.2x+4)(x)=0 | | 6a+1+4a=10 | | 5b–15=7b+15 |